Overlapping Replicator Dynamics for Functional Subnetwork Identification

نویسندگان

  • Burak Yoldemir
  • Bernard Ng
  • Rafeef Abugharbieh
چکیده

Functional magnetic resonance imaging (fMRI) has been widely used for inferring brain regions that tend to work in tandem and grouping them into subnetworks. Despite that certain brain regions are known to interact with multiple subnetworks, few existing techniques support identification of subnetworks with overlaps. To address this limitation, we propose a novel approach based on replicator dynamics that facilitates detection of sparse overlapping subnetworks. We refer to our approach as overlapping replicator dynamics (RDOL). On synthetic data, we show that RDOL achieves higher accuracy in subnetwork identification than state-of-the-art methods. On real data, we demonstrate that RDOL is able to identify major functional hubs that are known to serve as communication channels between brain regions, in addition to detecting commonly observed functional subnetworks. Moreover, we illustrate that knowing the subnetwork overlaps enables inference of functional pathways, e.g. from primary sensory areas to the integration hubs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Stable Overlapping Replicator Dynamics for Multimodal Brain Subnetwork Identification

Combining imaging modalities to synthesize their inherent strengths provides a promising means for improving brain subnetwork identification. We propose a multimodal integration technique based on a sex-differentiated formulation of replicator dynamics for identifying subnetworks of brain regions that exhibit high inter-connectivity both functionally and structurally. Our method has a number of...

متن کامل

Coactivated Clique Based Multisource Overlapping Brain Subnetwork Extraction

Subnetwork extraction using community detection methods is commonly used to study the brain’s modular structure. Recent studies indicated that certain brain regions are known to interact with multiple subnetworks. However, most existing methods are mainly for non-overlapping subnetwork extraction. In this paper, we present an approach for overlapping brain subnetwork extraction using cliques, w...

متن کامل

Neural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators

Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...

متن کامل

روش‌های مدل‌سازی تطوری در اقتصاد (با تاکید بر عناصر مشترک سازنده آنها)

In this paper we have tried mention to some sort of thewell-known evolutionary modeling approaches in economic territory such as Multi Agent simulations, Evolutionary Computation and Evolutionary Game Theory. As it has been mentioned in the paper, in recent years, the number of Evolutionary contributions applied to Multi-Agent models increased remarkably. However until now there is no consensus...

متن کامل

Discovering Sparse Functional Brain Networks Using Group Replicator Dynamics (GRD)

Functional magnetic resonance imaging (fMRI) has become increasingly used for studying functional integration of the brain. However, the large inter-subject variability in functional connectivity renders detection of representative group networks very difficult. In this paper, we propose a new iterative method that we refer to as "group replicator dynamics," for detecting sparse functional netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 16 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2013